
An Extensive Study on Adversarial A�ack against Pre-trained
Models of Code

Xiaohu Du∗†

Huazhong University of Science
and Technology, China
xhdu@hust.edu.cn

Ming Wen∗†‡

Huazhong University of Science
and Technology, China
mwenaa@hust.edu.cn

Zichao Wei∗†

Huazhong University of Science
and Technology, China
u201911736@hust.edu.cn

Shangwen Wang
National University of Defense

Technology, China
wangshangwen13@nudt.edu.cn

Hai Jin∗§

Huazhong University of Science
and Technology, China

hjin@hust.edu.cn

ABSTRACT

Transformer-based pre-trained models of code (PTMC) have been

widely utilized and have achieved state-of-the-art performance in

many mission-critical applications. However, they can be vulnera-

ble to adversarial attacks through identi�er substitution or coding

style transformation, which can signi�cantly degrade accuracy and

may further incur security concerns. Although several approaches

have been proposed to generate adversarial examples for PTMC, the

e�ectiveness and e�ciency of such approaches, especially on di�er-

ent code intelligence tasks, has not been well understood. To bridge

this gap, this study systematically analyzes �ve state-of-the-art ad-

versarial attack approaches from three perspectives: e�ectiveness,

e�ciency, and the quality of generated examples. The results show

that none of the �ve approaches balances all these perspectives.

Particularly, approaches with a high attack success rate tend to

be time-consuming; the adversarial code they generate often lack

naturalness, and vice versa. To address this limitation, we explore

the impact of perturbing identi�ers under di�erent contexts and

�nd that identi�er substitution within for and if statements is the

most e�ective. Based on these �ndings, we propose a new approach

that prioritizes di�erent types of statements for various tasks and

further utilizes beam search to generate adversarial examples. Eval-

uation results show that it outperforms the state-of-the-art ALERT

in terms of both e�ectiveness and e�ciency while preserving the

naturalness of the generated adversarial examples.

∗National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, HUST, Wuhan, 430074, China
†Hubei Engineering Research Center on Big Data Security, Hubei Key Laboratory of
Distributed System Security, School of Cyber Science and Engineering, HUST, Wuhan,
430074, China
‡Corresponding author
§Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616356

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Neural networks.

KEYWORDS

Adversarial Attack, Pre-Trained Model, Deep Learning

ACM Reference Format:

Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin. 2023. An

Extensive Study on Adversarial Attack against Pre-trained Models of Code.

In Proceedings of the 31st ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3611643.3616356

1 INTRODUCTION

Given the rapid development of deep learning (DL), many researchers

have applied DL techniques in various programming language pro-

cessing tasks with promising results achieved over recent years, and

such a trend continuously rises. The recently-proposed Transformer

architecture [28], which mainly employs the self-attention mecha-

nism, has shown promising results on dealing with the long range

dependency problem, which is a critical challenge for traditional

sequence models such as the Recurrent Neural Network. Therefore,

a number of state-of-the-art DL models are designed based on such

an architecture, one category of which is the pre-trained models of

code (PTMCs), such as CodeBERT [3] and CodeGPT [14].

Via utilizing the pre-training techniques, domain knowledge in

the large-scale publicly-available code repositories can be learned

by PTMCs, which can be further leveraged on downstream tasks

such as vulnerability detection, clone detection, and code summa-

rization [2, 3, 14]. Unfortunately, recent studies have shown that

similar to conventional deep learning models in the domains of

computer vision and natural language processing, PTMCs can also

generate totally di�erent results given two semantically-identical

input programs, one of which (a.k.a. the adversarial example) is

generated by performing certain semantic-preserving transforma-

tions to the other [7, 13, 17, 20, 34, 38, 40, 43]. This is devastating

considering that PTMCs have been deployed to a wide range of

mission-critical applications such as vulnerability detection [34, 39].

Speci�cally, an attacker may easily generate an adversarial example

that retains the vulnerability while misleading the PTMC to label it

as “non-vulnerable”.

489

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616356
https://doi.org/10.1145/3611643.3616356
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616356&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

One potential way to alleviate such a threat is adversarial re-

training, where the models under attack are continuously trained

with the generated adversarial examples to enhance the robust-

ness [34, 36]. Therefore, over the years, a number of adversarial

attack approaches have been proposed aiming to automatically

generate adversarial examples [7, 13, 17, 20, 34, 38, 40, 43]. Exist-

ing adversarial attack approaches di�er in terms of various design

aspects. First, at a high level, the semantic-preserving transforma-

tion can be performed at both the token level (e.g., by identi�er

substitution [17]) and the statement level (e.g., by adding dead

code [36]). Second, even if certain approaches are designed at the

same granularity (e.g., identi�er substitution), there also exists

multiple choices when determining how and what identi�ers to be

replaced: by random selection [38] or via pre-de�ned heuristics [34].

Such design aspects may signi�cantly a�ect the e�ectiveness of

the attack approaches. For instance, Yang et al. [34] showed that

certain pre-de�ned heuristics could outperform random selection

on generating new identi�er names.

Although huge e�orts have been made towards advancing ad-

versarial attacks targeting for PTMCs, the performance of existing

techniques has not been systematically evaluated and compared.

Little is known about their advantages and disadvantages. There is

thus an urgent need for a comprehensive empirical study compar-

ing and analyzing the e�ectiveness of the state-of-the-art (SOTA)

adversarial attacks targeting PTMCs. In particular, how is the ef-

fectiveness and e�ciency of the SOTA approaches with respect

to various PTMCs? How well do di�erent approaches generalize

across various code intelligence tasks? Most importantly, how is

the quality of the adversarial examples generated by di�erent ap-

proaches? If the quality is extremely low, the practical usefulness

can be compromised since they can be easily perceived by develop-

ers. Additionally, it is unclear how the context of code perturbations

a�ects the e�ectiveness of current attack approaches. Understand-

ing such problems is important to guide future researches in this

�eld.

To �ll this gap, in this study, we perform an extensive study on

existing SOTA adversarial attack approaches against PTMCs. Specif-

ically, we utilize �ve SOTA adversarial attack approaches to attack

three widely-used PTMCs (e.g., CodeBERT [3], CodeGPT [14], and

PLBART [2]). Our evaluation is performed on three well-studied

code intelligence tasks, including one generation task (i.e., code

summarization) and two understanding tasks (i.e., vulnerability

detection and code clone detection). Through extensive evaluations

and comparisons, our study makes several interesting �ndings: (1)

PTMCs can be easily attacked under all the three tasks and they

are relatively less robust on the generation tasks compared with

understanding tasks; (2) There is a trade-o� between the e�ective-

ness and e�ciency for the adversarial attacks: the attack approach

with the highest success rate usually queries PTMCs for the most

times; (3) The quality of adversarial examples is heavily in�uenced

by the identi�er substitution strategy. Identi�ers predicted with

context-aware information produce the highest quality examples

that are very similar to the original code, followed by a cosine

similarity-based substitution strategy. On the other hand, random

substitution leads to the lowest quality adversarial examples; and

(4) replacing identi�ers under di�erent types of statements exhibits

diverse chances to generate adversarial examples successfully while

such chances di�er signi�cantly with respect to the generation and

understanding tasks.

Based on our �ndings, we design an e�cient yet e�ective attack

approach called BeamAttack for code adversarial attack. BeamAt-

tack separates identi�ers into several groups based on the state-

ments where they are extracted. It then iteratively selects identi�ers

in a prioritized manner, selecting those that are most likely to result

in successful attacks, as summarized by our empirical evaluation.

BeamAttack reduces the attacking costs by dividing identi�ers into

smaller sub-groups and prioritizing them based on the likelihood

of successful attacks, rather than searching the entire identi�er

space. It can also reduce the risk of getting stuck in local optima, as

opposed to searching each individual identi�er similar to WIR [38].

The results on a total of six datasets demonstrate that our approach

achieves higher attack success rates with less queries than ALERT

while can preserve the naturalness of the generated adversarial

examples (i.e., the generated examples bear a high resemblance to

the code written by humans).

To summarize, we make the following major contributions:

• Originality. To our best knowledge, we perform the �rst ex-

tensive study on existing SOTA adversarial attacks approaches

towards PTMCs under well-studied code intelligence tasks.

• Extensive Study.We systematically compare �ve state-of-the-

art adversarial attack approaches from three perspectives: ef-

fectiveness, e�ciency, and the quality of generated examples.

Our evaluation reveals the strengths and weaknesses of existing

approaches, highlights useful insights, thus paving the way for

future researches in this �eld.

• Improvement. Based on our empirical �ndings, we exploit the

di�erences among diverse program contexts with respect to the

chances of successfully generating adversarial examples and de-

sign a simple yet e�ective attack approach. Our approach has

demonstrated promising results via extensive evaluation.

• Open Science.We have released all the artefacts of our study,

including the source code and experiment results, which available

at: https://github.com/CGCL-codes/Attack_PTMC.

2 BACKGROUND

2.1 Pre-Trained Models of Code

PTMC can learn universal language representations on the large

corpus and can avoid training a newmodel from scratch [6, 19]. The

pre-training paradigm usually consists of two stages: pre-training

and �ne-tuning. In the pre-training stage, it captures generic lan-

guage knowledge by employing self-supervised learning on a large

unlabeled corpus. In the �ne-tuning stage, the trained model can

be �ne-tuned for di�erent downstream tasks. PTMC can be divided

into three categories based on their architectures: encoder-only,

decoder-only, and encoder-decoder models [38]. Encoder-only pre-

trained models can support both the understanding and generation

tasks, and the most widely used ones are CodeBERT [3] and Graph-

CodeBERT [5]. Decoder-only models are good at generation tasks

like code completion while the adopted unidirectional architectures

are less e�ective on understanding tasks such as clone detection [4].

CodeGPT [14] is a well-known model based on Transformer be-

longing to this category. Encoder-decoder models are proposed

490

https://github.com/CGCL-codes/Attack_PTMC

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

aiming to tackle both the understanding and generation tasks, and

PLBART [2] as well as CodeT5 [33] are typical ones of such models.

2.2 Adversarial Attack on Code

2.2.1 Code Processing Tasks. Following prior works [14, 38], we

brie�y introduce three typical code processing tasks, which involve

the understanding task and generation task.

Clone Detection. It is a program understanding task aiming to

detect whether two source code snippets are identical or similar.

Vulnerability Detection. It is another program understanding

task whose purpose is to determine if a given code snippet contains

vulnerabilities or not.

Code Summarization. It is a generation task, which aims to gen-

erate natural language texts that describe the functionality of a

given code snippet.

2.2.2 Definitions. We give two de�nitions respectively for the un-

derstanding task and generation task. For the understanding task, a

classi�er 5 : X → Y is expected to predict the ground-truth label

~CADCℎ ∈ Y for a given code snippet G ∈ X. The goal of adversarial

attack is to add slight perturbations on G to generate adversarial

examples G03E that can mislead 5 . Speci�cally, an adversarial code

example should satisfy the following three requirements: (1) Adver-

sarial example should mislead the model: 5 (G03E) ≠ 5 (G) = ~CADCℎ .

(2) Adversarial perturbations should ensure the code is still syntac-

tically correct. That is, perturbations should conform to the syntax

rules of the programming language. For example, for the C language,

the identi�ers can only contain letters, numbers, and underscores.

(3) G03E should be semantically equivalent to G (i.e., have exactly

the same functionalities and generate the same results given a same

input). For the generation task, we take the code summarization as

an example. The model 5 : X → Y aims to maximize % (~CADCℎ | G)

where a given code snippet G ∈ X and the ground-truth summary

~CADCℎ ∈ Y. Since the output ~ of summarization models contains

many possibilities, we cannot employ the �rst requirement in the

understanding task to directly determine whether the attack is suc-

cessful. The existing work [43] utilizes the decrease on the BLEU

score to evaluate the performance of attack approaches. In this

paper, we follow the existing study [38] to consider an attack suc-

cessful when the BLEU score between adversarial summary and

the reference summary is 0, which indicates that the adversarial

summary does not match the reference summary at all. Similarly,

adversarial examples in generation tasks should also meet the re-

quirements (2) and (3) as de�ned in the understanding tasks.

3 STUDY DESIGN

In this section, we introduce the design of our empirical study,

including the selected pre-trained models, adversarial attack ap-

proaches, and benchmark datasets. We then introduce our designed

research questions and the corresponding experimental settings.

3.1 Subjects and Datasets

3.1.1 Target Models. Section 2.1 presents the SOTA PTMCs to date.

For each category of PTMCs, we choose one model for evaluation as

the previous report [38] indicates that they achieve very close per-

formance. Meanwhile, there is no PTMCmodel that can achieve the

optimum performance across di�erent tasks and datasets (e.g., for

encoder-only model, CodeBERT is better than GraphCodeBERT in

vulnerability detection while vice versa in clone detection. Simi-

larly, for the encoder-decoder model, CodeT5 outperforms PLBART

in vulnerability detection while vice versa in clone detection [38]).

Therefore, we select the most popular and widely-used one (indi-

cated by the number of citations) for each category. In particular,

we select CodeBERT [3], CodeGPT [14], and PLBART [2] in our

study from each category.

3.1.2 Adversarial A�ack Approaches. Table 1 summarizes the state-

of-the-art adversarial attack approaches published in the major

conferences and journals. The approaches selected in this study are

all black-box approaches since (1) white-box attacks often require

to access the information of model structures and parameters which

might not be easily obtained in practice, and thus attackers typi-

cally can only access the provided APIs to query the model; and (2)

white-box attacks tend to be model-speci�c in that di�erent models

employ di�erent structures, and thus an attack approach against a

speci�c model cannot generalize well to other ones. However, in

this study, we aim to evaluate the selected attack approach against

di�erent models under various applications. Among the listed black-

box attacks, we exclude the approach proposed by Nguyen et al. [16]

because it performs fake API insertion at the class level while the

datasets selected to evaluate the three tasks in this study are all at

the function level. Among the remaining eight black-box attacks,

four di�erent attacks [34, 38, 40, 43] can be directly reproduced and

are thus selected as our study subjects. As for the remaining four

approaches [7, 13, 17, 20], they perform semantic-preserving trans-

formations at the statement level (e.g., by inserting dead code or

transforming for loop into while loop). Because such approaches

usually contain common and similar transformation strategies, we

summarize widely-used strategies and integrate them into one ap-

proach. We brie�y introduce the selected �ve approaches below.

MHM [40]. MHM performs iterative identi�er substitution based

on Metropolis-Hastings (M-H) sampling [15]. This attack has two

main hyperparameters, the maximum number of iterations and the

number of candidate identi�ers per iteration. The larger the value,

the higher chance the attack will be successful. Unfortunately, it

will be less e�cient at the same time. We set these two parameters

to 100 and 30 respectively, following the original paper [40].

ACCENT [43]. ACCENT �rst selects K candidates for each identi-

�er based on the cosine distance, and then selects the best identi�er

and candidate based on the change in scores before and after substi-

tuting the identi�ers. This approach has twomain hyperparameters,

the number of candidate identi�ers K and the number of the iden-

ti�ers max that can be replaced. For a fair comparison with other

attacks, we set k to 30, and cancel the parameter max which means

we do not limit the number of replaced identi�ers.

WIR-Random [38]. WIR-Random utilizes Word Importance Rank

(WIR) to determine the substitution sequence of identi�ers, which

ranks each identi�er according to the di�erence in the probabilities

generated by the model before and after renaming the identi�er

to “UNK”. Then, WIR-Random sequentially replaces the sorted

identi�ers by randomly selecting candidates. For fair comparison

with MHM, we also limit the number of candidate identi�ers to 30.

ALERT [34]. ALERT utilizes context-aware identi�er prediction

for substitution. In particular, in terms of the identi�er selection

strategy, ALERT adopts two methods, the greedy algorithm and the

genetic algorithm. We set the relevant hyperparameters following

491

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

Table 1: Summary of existing adversarial attack approaches

(in ascending order by the publication year)

Approach Venue
White/
Black Task Perturbation

DAMP [36] OOPSLA’20 White
Functionality Classi�cation

Code Completion
Random Substitution
Dead-Code Insertion

MHM [43] AAAI’20 Black Functionality Classi�cation Random Substitution

Srikant et al. [26] ICLR’21 White Functionality Classi�cation
Random Substitution
Dead-Code Insertion

Rabin et al. [20] IST’21
White &
Black

Method Name Prediction
Random Substitution
Style Transformation

Pour et al. [17] ICST’21 Black

Method Name Prediction
Code Captioning
Code Search

Code Summarization

Random Substitution
Style Transformation

Nguyen et al. [16] ASE’21 Black API Recommender Fake APIs Insertion

AVERLOC [7] SANER’22 Black Code Summarization
Random Substitution
Style Transformation

ACCENT [43] TOSEM’22 Black Code Summarization Based on Cosine Distance

ALERT [34] ICSE’22 Black
Authorship Attribution

Clone Detection
Vulnerability Detection

Context Prediction

RoPGen [13] ICSE’22 Black Authorship Attribution Style Transformation

CARROT [39] TOSEM’22 White
Functionality Classi�cation

Clone Detection
Vulnerability Detection

Random Substitution

WIR-Random [38] ISSTA’22 Black
Vulnerability Detection
Code Summarization

Random Substitution

the original paper, including the number of candidate identi�ers

(i.e., 30) and the maximum number of iterations (the larger one

between 5 × #D<8 and 10, where #D<8 denotes the number of

identi�ers in the code).

StyleTransfer [7, 13, 17, 20]. The idea of StyleTransfer is to per-

form certain transformations that do not alter the semantics of the

program. In this attack, we select some common transformation

strategies from existing studies including (1) randomly adding a

log statement; (2) replacing while and for loops with each other;

(3) exchanging two independent statements; (4) reordering a binary

condition; (5) exchanging switch to if; (6) randomly adding a

try-catch block; (7) randomly adding a piece of dead code; (8)

switching the value of a boolean variable and propagating this

change. Then, we apply transformations to generate N candidate

examples and use them to attack the model. N is set to 500 in this

study to avoid the huge overhead in the attack process.

3.1.3 Datasets. To ensure the comprehensiveness of our under-

standing towards the performance of existing attacks, we study

three tasks: vulnerability detection, clone detection for understand-

ing tasks, and code summarization for generation tasks. We select

representative benchmarks to evaluate them. For clone detection,

BigCloneBench [27] is a widely used clone detection benchmark

that contains four main types of intra-project and inter-project

clones. To better evaluate the adversarial attacks, we adopt the �l-

tered dataset proposed by Yang et al. [34]. Their �ltering strategies

include removing unlabeled data, balancing the two labels (clones

and non-clones), and making the data at a computationally friendly

scale. As a result, our dataset includes 90,102 examples for train-

ing and 4,000 examples for validation and testing, respectively. For

vulnerability detection, the Open Web Application Security Project

(OWASP) Benchmark1 is a Java test suite designed to evaluate vul-

nerability detection tools, and it is widely used in vulnerability

detection tasks [9, 23, 25]. We adopt version 1.1 of this benchmark,

which contains more data and is suitable for training models. As a

result, the dataset includes 13,041 examples for training and 4,000

1https://owasp.org/www-project-benchmark

examples for validation and testing, respectively. For code sum-

marization, CodeSearchNet [11] is a widely used dataset, which

includes data from six programming languages. We follow existing

works [14, 38] and use the �ltered Java sub-datasets for code sum-

marization, which results in 164,923 examples for training, 5,183

for validation, and 10,955 for testing.

3.2 Evaluation Metrics

We adopt the following metrics for evaluation.

Accuracy. It is the proportion of correctly predicted instances in

the test set, which is used in the task of vulnerability detection.

Precision, Recall, and F1 Score. These three metrics are used for

evaluating clone detection. Precision (P) is the proportion of cloned

pairs correctly predicted as cloned to all pairs predicted as cloned.

Recall (R) is the proportion of cloned pairs correctly predicted as

cloned to all known real cloned pairs. F1 is the harmonic mean of

precision and recall and it is calculated as: �1 = 2 ∗ (% ∗ ')/(% + ').

BLEU-4. BLEU is widely used to evaluate the textual similarity

between the text generated in generative systems and the ground-

truth. BLEU-4 [30, 38] is a variant of BLEU, where the 4 indicates

that four consecutive words (4-gram) are used as the matching unit.

We �ne-tune PTMCs following existing works [14, 38], and Ta-

ble 2 lists the reproduced results. The results are consistent with the

previously reported ones in the original paper, which indicates that

the models in our experiments have been adequately �ne-tuned.

Table 2: Evaluation results on pre-trained models of code

Task VD CD CS
Metrics Acc Precision Recall F1 BLEU-4

CodeBERT 98.70 96.42 96.32 96.32 18.75
CodeGPT 97.45 96.55 96.52 96.52 15.36
PLBART 99.52 96.83 96.83 96.82 17.60
VD: Vulnerability Detection; CD: Clone Detection; CS: Code Summarization

3.3 Research Questions

The goal of this study is to systematically evaluate and compare

the performance of the SOTA adversarial attack approaches against

various PTMC under di�erent PL tasks, including their e�ective-

ness and e�ciency. More importantly, we are also curious to know

the code qualities of the generated adversarial examples since it is

reported that the quality of the generated examples is of signi�cant

importance [34]. To our best knowledge, it is also the �rst large-

scale investigation towards the quality of the adversarial examples.

Besides, we also investigate whether the context of perturbed iden-

ti�ers will a�ect the performance of existing adversarial attack

approaches. We introduce our target RQs in detail as follows:

RQ1: (Attacking performance) How do existing adversarial

attack approaches perform against di�erent PTMCs under

various tasks? In this RQ, we attempt to thoroughly compare the

SOTA adversarial attack approaches based on two criteria [37, 39].

C1: E�ectiveness. We compare the e�ectiveness of adversarial

attacks according to the Attack Success Rate (ASR), which is the

percentage of code snippets on which an attack approach can suc-

cessfully generate adversarial examples, given a code dataset. A

higher ASR indicates a more e�ective attack.

C2: E�ciency.We compare the e�ciency of adversarial attacks

according to two metrics: (1) Average Model Queries (AMQ). AMQ

denotes the number of queries to the attacked model during the

492

https://owasp.org/www-project-benchmark

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

generation of adversarial examples, which is positively related to

the attack running time. Too many model queries will be abnormal

and suspicious for the attacked party. (2) Average Running Time

(ART). ART is an overall metric of the e�ciency of the attack

approach. It is not only related to the number of model queries, but

also to the perturbation strategy. For example, the genetic algorithm

is more time-consuming than the greedy algorithm [8].

RQ2: (Adversarial code quality) What is the quality of ad-

versarial examples generated by adversarial attacks? Natural-

ness is crucial in adversarial example generation [34], as highlighted

by ACCENT [43]: people will easily argue that if the replaced identi-

�ers are signi�cantly di�erent from the original ones, the summary

should be di�erent. Therefore, they use cosine similarity to con-

strain adversarial examples. According to the existing works on the

evaluation of perturbation towards text [32, 41] and code [34, 43],

there are two main aspects concerning the quality of the gener-

ated examples. First, the number of tokens that are replaced should

be as small as possible. Second, the adversarial tokens need to be

as similar as the original ones in terms of their semantics. In this

study, we evaluate the former with Identi�er Change Rate (ICR) and

Token Change Rate (TCR), and the latter with Average Code Simi-

larity (ACS) and Average Edit Distance (AED), following existing

studies [32, 34, 41, 43]. The calculation of these four metrics are as

follows. (1) For : adversarial examples, if there are in total<8 iden-

ti�ers in the 8Cℎ code snippet and =8 identi�ers have been changed

in the adversarial examples, then ICR is evaluated as
∑:
1
=8/

∑:
1
<8 ;

(2) Beyond the identi�ers, the source code may contain other code

tokens such as keywords, operators, etc. TCR is the ratio of the

changed tokens in the adversarial example to the total number of

tokens in the entire code. (3) We use the cosine similarity to re�ect

the code similarity before and after the perturbations are performed.

In particular, ACS is computed based on the embeddings that vec-

torized from the source code by CodeBERT; (4) AED re�ects the

character-level token di�erences, which is the number of times a

token needs to be edited at the character level in order to transform

into another. In general, a high-quality adversarial example should

preserve lower ICR, AED, and TCR while the ACS should be higher.

RQ3: (Context of perturbed identi�ers) How do the con-

texts of the perturbed identi�ers a�ect the adversarial at-

tacking performance? Existing adversarial perturbations tend

to treat all identi�ers equally, which leads to a large search space

and might also compromise the attacking e�ciency. To reduce the

search overhead, we aim to explore the impact of the contexts of

di�erent identi�ers on the attacking results in this RQ. In particular,

we regard the statements where the identi�ers reside as contexts

and investigate whether perturbing identi�ers residing at di�erent

contexts will a�ect the attacking e�ectiveness. In this study, we

select the top �ve statements that are commonly used in code [18]

for investigation, which are Return, If, Throw, Try, and For state-

ments. In addition to these types of statements, we also investigate

the impact of merely modifying method names and the parameters

to verify whether the models are vulnerable to such changes.We

refer to them as Method in this study. We use ASR to observe

the impact. Particularly, we choose two attacks with the highest

ASR, which are MHM andWIR-Random. Finally, we use CodeBERT

as the target model because it is the most studied PTMC to date.

3.4 Settings of Attacks

We use the trained models as introduced in Section 3.1.1 as the at-

tack targets and adapt the original code of the �ve attack approaches

in this study. In particular, we only make limited modi�cations on

the code, speci�cally focusing on the data loading and a few param-

eters (e.g., the candidate identi�ers as mentioned in Section 3.1.2),

to serve for the need of processing our selected datasets. We use all

the test set as the target instances (i.e., in total 4,000) for attacks on

vulnerability detection and clone detection. For the code summa-

rization task, we randomly select 4,000 examples from the test set

as instances used for attacks to align with the number of the target

instances used in the other two tasks. Meanwhile, it is bene�cial for

our study to explore the di�erences between the robustness of mod-

els for di�erent tasks under the same scale of adversarial attacks.

When evaluating the attack approaches based on identi�er substi-

tution, we skip source programs without identi�ers. Besides, we

also skip the instances that are classi�ed incorrectly by the model

to mitigate the e�ect of model performance. Such settings are com-

monly used in adversarial attacks [34, 40]. Although we exclude a

small proportion of instances, our study is large-scale. In particular,

we perform attacks on more than 150,000 target programs with

over 100 million queries to various PTMC models.

4 EMPIRICAL RESULTS

In this section, we present the results of our empirical studies.

4.1 Attack Performance (RQ1)

4.1.1 E�ectiveness. We perform experiments on the �ve attack

approaches and measure their Attack Success Rate (ASR), and the

results are shown in Table 3. Generally, all the three target models

can be easily attacked under the three di�erent tasks. In particular,

MHM can achieve the highest ASR (i.e., 57.83%) averaged over all

the experiments, followed by WIR-Random (i.e., 38.77%). Based on

the results, we make the following observations.

First, random substitution is more e�ective than the other pertur-

bation strategies. Speci�cally, both MHM and WIR-Random adopt

the strategy of random substitution while ALERT perturbs identi-

�ers based on context-aware prediction. Consequently, MHM and

WIR-Random outperform ALERT by 184.60% and 90.80%, respec-

tively. Meanwhile, such outperformance can be observed for all

the three tasks, which re�ects that random substitution is the most

e�ective strategy to mislead pre-trained models. On the contrary,

StyleTransfer is less e�ective. We conjecture the behind reason is

that existing trained clone detection models are more robust to

various code transformation strategies. For example, the cloning

method summarized by Walker et al. [29] includes adding/deleting

code snippets and reordering statements, which is very similar to

the strategies as adopted by StyleTransfer. Therefore, the clone

detection model can learn su�cient code transformation features

on such code clone pairs, thus being robust to StyleTransfer.

Second, the models are more robust against adversarial attacks

under the understanding tasks than the generation tasks. In par-

ticular, we observe that the ASR of the �ve attacks on the code

summarization model is higher than that of the clone detection and

vulnerability detection. The average ASRs of clone detection and

vulnerability detection are 24.39% and 22.62%, much lower than

that of code summarization, which is 52.25%. Among them, MHM

493

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

Table 3: Attack success rate on pre-trained models of code

Attack Approach MHM ACCENT ALERT WIR StyleTransfer Avg

CD
CodeBERT 47.13 21.58 14.48 35.00 0.42 23.72
CodeGPT 43.90 23.55 6.59 35.43 0.27 21.95
PLBART 45.89 51.64 9.10 30.23 0.68 27.51

VD
CodeBERT 57.12 31.10 4.23 18.17 21.97 26.52
CodeGPT 29.68 24.95 4.75 13.11 9.04 16.31
PLBART 25.09 35.07 17.28 22.23 25.58 25.05

CS
CodeBERT 93.80 64.85 48.58 79.84 29.97 63.41
CodeGPT 87.11 21.17 23.50 52.90 6.71 38.28
PLBART 90.76 53.73 54.37 62.00 14.45 55.06

Average Number 57.83 36.40 20.32 38.77 12.12
CD:Clone Detection; VD:Vulnerability Detection; CS:Code Summarization

achieves an ASR over 90% on the three code summarization models

on average, which shows that these models can be easily attacked

under the task of code summarization, and output completely irrel-

evant summaries compared to their original outputs.

Third, among the di�erent pre-trained models, CodeGPT is more

resistant to various attacks. CodeGPT achieves the lowest ASR in

11/15 of the experiments (�ve attacks for three tasks). The average

ASR over the three tasks of the �ve attacks on CodeGPT is 25.51%

as shown in the last column of Table 3, which is lower than that of

CodeBERT by 37.88% and PLBART by 35.87% respectively.

Finding 1: Pre-trained models with excellent performance can

be easily misled by various adversarial attacks. In particular,

random strategies are more e�ective; models for the genera-

tion tasks are less robust compared to understanding tasks; and

CodeGPT is in general more resistant to various attacks.

4.1.2 E�iciency. Table 4 shows the results with respect to AMQ

and ART. Via analyzing these two metrics in conjunction with ASR,

we make the following observations.

First, the e�ciency of di�erent attacks varies greatly. The average

AMQ of ALERT and MHM is 1,945.69 and 1,613.90 respectively,

while that of WIR-Random and ACCENT is only 212.98 and 159.87.

Such di�erences are caused by the characteristics of the attack ap-

proaches themselves. In particular, MHM employs a large number

of iterations while StyleTransfer only transfers the target code for

a limited number of times to maintain the naturalness of the code.

Besides, ALERT uses the genetic algorithm with multiple itera-

tions, which tends to repeatedly replace the same identi�er, while

WIR-Random and ACCENT only replace identi�ers sequentially

according to their importance calculated by the algorithm, and

they will not repeat replacing identi�ers. For the same attack, the

e�ciency varies on di�erent tasks as well. Speci�cally, the average

AMQ of the �ve attack approaches on the three PTMCs is 1,078.80

and 1,181.77 on clone detection and vulnerability detection, but this

value is 366.26 on code summarization. Further analysis reveals that

it is caused by the low robustness of code summarization models

(Finding 1). The high ASR of the attack approaches on code sum-

marization models means that attacks can terminate early without

performing all iterations or visiting all replaceable variables.

Second, the number of model queries is positively correlated with

the attack successful rate in general. Figure 1 depicts the correlation

between AMQ and ASR. As it reveals, attacks with a higher ASR

often require a larger number of AMQ. For example, the MHMwith

the highest ASR has an average AMQ of 1,613.90 across all models,

while the corresponding values of ACCENT and StyleTransfer with

(a) CD (b) VD (c) CS

(d) CD (e) VD (f) CS

Figure 1: The correlation between AMQ&ART and ASR

a lower ASR are 159.87 and 445.59 respectively. However, the run-

ning time (ART) is not necessarily positively correlated with ASR.

Speci�cally, although StyleTransfer queries themodels for less times

than MHM (445.59 vs 1,613.90 on average), it takes much longer

time for StyleTransfer to process the queries than MHM (14.72 mins

vs 4.39). As a result, the metric ART is not positively correlated

with ASR as shown in Figure 1. It is because an attack approach

often contains additional time consumption besides querying the

model. For instance, StyleTransfer usually spends a lot of time on

code transformation.

(a) CD (b) VD (c) CS

(d) CD (e) VD (f) CS

Figure 2: The correlation between AMQ&ART and the num-

ber of identi�ers in the target program

(a) CD (b) VD (c) CS

Figure 3: The correlation between ASR and the number of

identi�ers in the target program

Third, the e�ciency of various attacks is a�ected by the total

number of identi�ers that can be extracted from the program. As

shown in Figure 2, AMQ and ART always increase with the number

of identi�ers, and this trend holds for all the three tasks. Such a

trend arises from the fact that the number of replaceable identi�ers

plays the fundamental role in attacks. Speci�cally, both ALERT

and WIR utilize the greedy algorithm to iterate over all identi�ers.

Therefore, in the worst case, where the attack fails, its theoretical

number of queries is the product of the number of identi�ers and the

494

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Average Model Queries (AMQ) and Average Running Time (ART) on attacking CodeBERT, CodeGPT, and PLBART

Attack Approach
Average Model Queries (AMQ) Average Running Time (ART) (min)

MHM ACCENT ALERT WIR-Random StyleTransfer MHM ACCENT ALERT WIR-Random StyleTransfer

Clone
Detection

CodeBERT 1,884.43 196.09 2,263.53 247.65 498.12 5.69 2.95 4.49 0.63 9.25
CodeGPT 2,040.39 206.35 2,596.18 250.58 498.83 6.94 3.13 5.89 0.27 14.09
PLBART 2,040.01 157.03 2,549.49 256.27 496.97 7.79 2.36 8.39 0.33 18.35

Vulnerability
Detection

CodeBERT 1,877.43 235.83 2,718.57 276.30 397.33 1.75 5.09 2.02 0.24 20.00
CodeGPT 2,497.18 228.29 2,798.29 282.98 459.41 2.72 5.33 1.55 0.23 21.42
PLBART 2,446.50 256.31 2,592.32 277.02 382.72 3.37 4.66 3.65 0.27 20.07

Code
Summarization

CodeBERT 395.01 36.49 565.63 90.31 368.71 1.38 0.21 2.30 0.61 7.19
CodeGPT 756.67 76.15 938.39 126.64 469.58 8.29 0.80 8.78 1.83 11.80
PLBART 587.51 46.27 488.82 109.07 438.67 1.62 0.26 1.70 0.30 10.34

Average Number 1,613.90 159.87 1,945.69 212.98 445.59 4.39 2.75 4.31 0.52 14.72

number of potential candidates. We further explore the correlation

between the number of identi�ers in the target program and the

attack successful rate, and the results in Figure 3 show that more

identi�ers can in general lead to higher attack successful rates.

Finding 2: There is a trade-o� between the e�ectiveness and

e�ciency for adversarial attacks. Attacking with higher suc-

cessful rates often requires a larger number of model queries.

Besides, the e�ciency of attack is also a�ected by the number

of identi�ers in the target program.

4.2 Adversarial Code Quality (RQ2)

The above RQ demonstrates the e�ectiveness and e�ciency of

adversarial attacks against di�erent PTMCs under various tasks.

However, with the recent focus on the naturalness of the generated

adversarial examples [34], a question naturally arises: which attack

generates adversarial examples of higher qualities? Via analyzing

the results of ICR, TCR, ACS and AED are shown in Figure 4, we

make the following observations.

First, none of the attacks can achieve the optimal performance on

the three tasks in terms of naturalness. Speci�cally, ALERT achieves

the best in terms of ICR, ACS, and AED on average, while ACCENT

is the optimal on average against TCR. The results are also di�erent

on various tasks. For instance, ALERT outperforms ACCENT on

average against ICR, ACS, and AED on clone detection and vulner-

ability detection, but vice versa on code summarization. In general,

ACCENT and ALERT outperform MHM and WIR-Random in terms

of the averaged ACS, and AED on all tasks since they both consider

the naturalness of adversarial examples when replacing identi�ers.

Second, e�ective attacks in general generate less natural adver-

sarial examples. The adversarial examples generated by MHM and

WIR-Randomwith the highest ASR have the lowest ACS to the orig-

inal code and the largest ICR, TCR, and AED, indicating that their

adversarial code quality is generally lower. This raises the question

towards the usefulness of MHM and WIR-Random in practice since

an existing study points out that the adversarial example should

not only cheat the model but also be natural to human judges [34].

Conversely, the adversarial codes generated by ALERT and AC-

CENT perform best on both ACS and AED, indicating that these

adversarial code are more similar to the original code. Such results

also con�rm that the adversarial code are more natural than ran-

dom replacement as claimed by ALERT and ACCENT. A potential

reason for the high attack successful rate of MHM is that less natu-

ral perturbations may lead to Out-of-Distribution (OOD) examples.

(a) ICR-CodeBERT (b) ICR-CodeGPT (c) ICR-PLBART

(d) TCR-CodeBERT (e) TCR-CodeGPT (f) TCR-PLBART

(g) ACS-CodeBERT (h) ACS-CodeGPT (i) ACS-PLBART

(j) AED-CodeBERT (k) AED-CodeGPT (l) AED-PLBART

Figure 4: Comparison of ICR, TCR, ACS, and AED on attack-

ing CodeBERT, CodeGPT, and PLBART. The lower ICR, AED,

and TCR with the higher ACS indicates better performance.

Such examples could easily lead to the success of adversarial attacks

because the models may not perform well on data with di�erent

distributions [22].

Third, the adversarial examples generated by attacking CodeGPT

are less similar to the original program than the other pre-trained

models. Speci�cally, when the target model is CodeGPT for all

attacks, the average ACS is 0.9701, which is lower than 0.9716 and

0.9715 of CodeBERT and PLBART, and the average AED is 127.15,

which is higher than 112.72 and 110.35 of CodeBERT and PLBART.

Such di�erences are all signi�cant as revealed by theMann-Whitney

U test [21] (?-value<0.05). This result also con�rms Finding 1, that

is, CodeGPT is more resistant to various attacks. Since ASR is

negatively correlated with naturalness, the attack algorithm has

495

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

Table 5: Attack success rate for replacing identi�ers under di�erent contexts

Position
Clone Detection Vulnerability Detection Code Summarization

Total
MHM WIR-Random

Total
MHM WIR-Random

Total
MHM WIR-Random

n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3
Method 4,000 11.01 17.90 1.92 9.91 4,000 11.16 19.81 2.36 5.70 4,000 61.32 88.81 46.84 80.81
Return 1,650 11.08 11.26 1.83 2.08 2,659 10.60 10.60 2.49 2.49 2,303 26.81 29.77 14.22 18.25

If 2,574 15.07 23.37 3.00 11.42 2,773 12.38 21.07 2.33 5.47 2,446 24.81 32.40 13.72 22.33
Throw 899 10.81 13.39 1.23 3.07 2,337 7.37 7.37 1.58 1.58 462 25.21 27.12 12.33 14.25
Try 2,858 13.78 23.89 2.30 12.77 2,501 8.41 15.24 1.93 4.33 603 22.87 30.77 11.13 20.85
For 741 16.11 26.05 3.08 14.29 398 10.98 18.40 2.97 5.64 398 26.73 35.14 15.32 29.13

to choose the suboptimal word with a longer distance among the

candidate identi�ers to achieve the purpose of misleading CodeGPT.

Finding 3: There is a trade-o� between the e�ectiveness and

naturalness for adversarial attacks. Speci�cally, e�ective attacks

generate less natural adversarial examples. In general, substitu-

tion strategies such as context-aware identi�er prediction and

replacement based on cosine similarity can generate examples

of higher qualities than that of random substitution.

4.3 Contexts of Perturbed Identi�ers (RQ3)

The exploration of the above two RQs demonstrates that there are

two factors a�ecting the e�ectiveness of adversarial attack, the

search algorithm and the identi�er substitution strategy. However,

they both concentrate on how to change the programs, while an-

other important perspective for adversarial attack is determining

what identi�ers should be changed. In this RQ, we investigate if

perturbing identi�ers under di�erent contexts can cast signi�cant

impact on the attacking e�ectiveness. Via analyzing the results as

shown in Table 5, we make the following observations.

A large number of instances can be successfully attacked even if

only one identi�er is replaced. Speci�cally, we limit the replaced

identi�ers to 1 and 3 respectively. The results show that existing

techniques can still attack various models successfully, and the

ASR increases as such a threshold increases. For di�erent attack

approaches, MHM is consistent with previous experiments in that

ASR is higher than WIR-Random in all cases. In this paper, we

explore the impact of identi�ers in di�erent statements on the

models’ performance. Next, we take MHM as an example to make

such explorations since the ASR of MHM and WIR-Random on

di�erent statements share similar trend. To ease for presentation,

we refer to the di�erent statements by their name, such as For.

The results show that the attacking e�ectiveness is sensitive to the

identi�ers under various types of statements, and such sensitivity di-

verges across various tasks. Speci�cally, in clone detection, replacing

identi�ers in For, If, and Try is more likely to result in a successful

attack. For instance, when n=3, the ASR of these three statements

all exceed 20%, and the highest is 26.05% of For. The perturbations

to Method, Throw, and Return achieve relatively low ASRs (less

than 20%), the lowest of which is 11.26% of Return. In vulnerability

detection, the �rst three most e�ective statements are If, Method,

and For. When n=3, the ASR of these three statements are close to

20%, and the highest is 21.07% of If. Throw has the lowest impact

(ASR=7.37%). In code summarization, Method dominates the attack

e�ectiveness with an extremely high ASR of 88.81%, which is sig-

ni�cantly higher than those of the other statements. Speci�cally,

the ASRs of the remaining types of statements are all below 50%.

Among them, Throw has the lowest impact on the code summariza-

tion model, with its ASR reaching 27.12%. We further perform a

case study to analyze why prioritizing statements can signi�cantly

a�ect the performance of adversarial attacks (see Section 6.1).

Finding 4: The context of the identi�ers (e.g., where the identi-

�ers reside) can a�ect the attacking e�ectiveness signi�cantly,

which suggests that the perturbation strategies should consider

the context of identi�ers aiming for more e�ective attacks.

5 NEW APPROACH

Our empirical investigation reveals two main challenges for ad-

versarial attack against PTMC, which are the trade-o� between

e�ectiveness and e�ciency (Finding 2) as well as that between

e�ectiveness and naturalness (Finding 3). Both the two challenges

may compromise the practical usefulness of existing adversarial

attacks. Aiming to alleviate the second challenge, the state-of-the

art approach, ALERT [34], adopts a context-aware identi�er substi-

tution strategy to improve adversarial code naturalness. However,

our experiment reveals that both the e�ectiveness and e�ciency of

ALERT are still limited. For instance, it only achieves an average

ASR of 20.32% on the three tasks.

Our tool aims to enhance both the e�ectiveness and e�ciency

while guaranteeing the naturalness, and the novelty of which is

mainly embodied in the following two aspects. First, Finding 4

shows that perturbations on di�erent types of statements can

achieve varying success rates on existing attack techniques. As

such, we propose to incorporate such prior knowledge to prioritize

identi�er selection, thus enhancing the e�ectiveness and e�ciency

of the attack. This attack strategy, which incorporates code features,

is di�erent from all the previous works, including the SOTA ALERT.

Second, Finding 2 reveals that the e�ectiveness and e�ciency of

existing attacks are still limited. The reasons are as follows. MHM

mainly uses a random method to replace identi�ers one by one

along the sequence of identi�ers that can be replaced while this

strategy requires a large number of queries to mislead the model.

Meanwhile, ALERT, ACCENT, and WIR-Random replace identi�ers

sequentially. Once the top candidates fall into local optimal solu-

tions, it is di�cult for them to �nd the global optimal solution since

they do not repeatedly process the replaced identi�ers. To alleviate

such problems, we propose to use beam search [12] to focus on

all the identi�ers in a statement, which can simultaneously search

from multiple sequences and replace multiple identi�ers.

5.1 Approach Design

Algorithm 1 shows the work�ow of BeamAttack. It �rst obtains

the set of identi�ers in di�erent statements S and the number of

statement types T (Line 2). The priority of di�erent statements is

496

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

summarized by our prior knowledge as shown in Table 5. For in-

stance, the prioritized statement types for the clone detection task

is: For, If, Try, Method, Throw, Return, and Others. BeamAt-

tack then performs beam search over di�erent types of statements

sequentially to generate new examples. For the �rst iteration, the

replaced codes are the source program ? (Line 3). For subsequent

iterations, the replaced code are the : perturbed codes returned

by function BeamSearch (Section 5.1.1) in the previous iteration.

The sequence to be replaced (which is denoted as (4@) is initial-

ized to all the identi�ers in the entire statement (Line 5). We apply

BeamSearch multiple times until the last category of statements

is searched or an adversarial example is successfully generated.

Note that we record the replaced identi�ers after each BeamSearch

(Line 7). Finally, BeamAttack performs the last BeamSearch with

the recorded replaced identi�er as (4@ (Line 8). This step is to allevi-

ate the limitation that beam search will not process those identi�ers

that have already been replaced. Since an identi�er can only be

replaced by a unique candidate in the adversarial example, some

suboptimal candidates are discarded during the search, and they

may become optimal after subsequent identi�ers are replaced.

5.1.1 BeamSearch. The maximum iteration in the search is set to

be the product of (4@’s length and the weight of the statement type

(Line 6). In particular, we set the weight of the most important

statement type to 1, and the other weights are set proportionally

according to the prior knowledge in Table 5. In each iteration in

BeamSearch, we apply Perturb (Section 5.1.2) on all the identi-

�ers from the current type of statements. After that, BeamSearch

selects the k best ones in the current generation and the previous

generation to serve for the next iteration. Note that the search

process will stop if the current iteration fails to generate new quali-

�ed candidates. Since the number of identi�ers is proportional to

the maximum number of iterations of BeamSearch, it will directly

a�ect the e�ciency of BeamAttack. As shown in Figure 3, the num-

ber of identi�ers di�ers for the three tasks. To balance the attack

success rate and e�ciency, we set k to 2, 3, and 5 in clone detection,

vulnerability detection, and code summarization, respectively.

5.1.2 Perturb. Perturb �rst uses CodeBERT to generate the 30

most similar candidates for an identi�er following the four attacks

investigated in our study. This similarity is based on the cosine sim-

ilarity between the embeddings from CodeBERT-MLM following

ALERT, which is trained with the objective of masked language

modeling. These candidates are generated in real-time for each

Perturb. Since some identi�ers are changed during the attack, the

top 30 candidates for the identi�er to be replaced will also change

accordingly. Then, Perturb chooses the identi�er in the candidate

list that reduces the current probability of true label the most for

replacement to guarantee the naturalness. If the drop in probability

changes the model’s predicted label or makes the code summary

completely independent of the ground truth (i.e., BLEU = 0), we con-

sider the attack successful and output the adversarial example and

the replaced identi�er. Otherwise, Perturb returns the perturbed

code, original identi�er, replaced identi�er, and the probability for

the corresponding replacement.

5.2 Evaluation

5.2.1 Evaluation Datasets. To evaluate our method thoroughly, we

�rst evaluate it on the dataset as listed in Section 3.1.3. Furthermore,

Algorithm 1: The Main Work�ow of BeamAttack

Input: source program ? , beam size : , statement weight (,
Output: adversarial example 03E

1 A E = [] # replaced variable

2 (,) = GetStatements(p) /* S is the set of identifiers in different

statements, T is the number of statement types */

3 P0 = {?, ([0]}

4 for C = 0→) do

5 (4@C = ([C]

6 <0G_8C4A = !4=6Cℎ ((4@C) ∗ (, [C] PC+1 ← BeamSearch(PC ,<0G_8C4A)

7 A E.append(PC+1 . A4?;0243+0A801;4)

8 BeamSearch({�>34) , A E }, !4=6Cℎ (A E)) Function

BeamSearch(PC = {�>34C , (4@C },<0G_8C4A)
9 while not exceed<0G_8C4A do

10 P2>?~ ← PC

11 for�>34C
8
in PC do

12 for (4@C
9
in PC do

13 PC+1
8
← Perturb (�>34C

8
, (4@C

9
)

14 PC ← Selection(PC ∪ PC+1, :)

15 if PC == P2>?~ then

16 return PC

17 return PC

to demonstrate its generalizability, we perform additional evalua-

tions on three other datasets. For clone detection, we use the �ltered

Google Code Jam (GCJ) [31, 42] dataset consisting of 90,102 exam-

ples for training and 4,000 for validation and testing respectively.

For vulnerability detection, we use the Juliet Test Suite2, which

is another widely used open source security benchmark [25, 35]

besides OWASP. In particular, we utilize the Java sub-dataset and

exclude instances with identical function bodies, and �nally ob-

tain the training, validation, and testing sets consisting of 23,636,

2,954, and 2,954 examples respectively. For code summarization,

we use TL-CodeSum (TLC) [10], which is widely used as a bench-

mark [1, 24]. Similar to Juliet, we �lter out duplicate examples and

obtain the training, validation, and testing sets consisting of 69,633,

8,700, and 6,445 examples respectively. We also try to reproduce the

results on these datasets, and the results re�ect that our �ne-tuned

models can also achieve similar performance.

5.2.2 Evaluation Results. We evaluate BeamAttack and ALERT on

18 sets of experiments (3 pre-trained models × 3 tasks × 2 datasets)

as they both use the context-aware identi�er prediction as the

substitution strategy to guarantee the naturalness of adversarial

examples. The evaluation results are summarized in Table 6, and we

can observe that BeamAttack consistently achieves higher attack

success rates on all experiments. On average, BeamAttack outper-

forms ALERT by 20.85% in terms of ASR, showing that it is more

e�ective in achieving successful attacks. With respect to the attack

e�ciency, BeamAttack outperforms ALERT on 15/18 experiments.

In addition, the average AMQ of BeamAttack is 1,690.12, which

is 11.98% less than that of ALERT (1,920.18 on average). This indi-

cates that our method, which relies on the statement importance to

search for adversarial examples, is more e�cient. Since BeamAttack

replaces identi�ers based on context-aware identi�er prediction,

the adversarial examples generated by it are of higher qualities with

lower perturbation rates. Speci�cally, the average ICR of BeamAt-

tack is 8.49, which is lower than that of ALERT (11.32 on average).

Meanwhile, the average ICR and TCR of BeamAttack on the 18

2https://samate.nist.gov/SARD/test-suites

497

https://samate.nist.gov/SARD/test-suites

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

Table 6: Performance comparison between BeamAttack and ALERT

Attack Results
Clone Detection-BCB Vulnerability Detection-OWASP Code Summarization-CSN

ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓ ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓ ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓

CodeBERT
BeamAttack 22.43 1,992.97 2.69 9.06 1.49 0.9872 66.45 5.04 1,956.58 2.94 2.90 0.43 0.9815 94.06 51.46 371.82 1.53 15.05 1.80 0.9951 15.91

ALERT 14.48 2,263.53 4.49 8.77 1.00 0.9837 78.35 4.23 2,718.57 2.02 2.79 0.34 0.9868 77.72 48.58 565.63 2.30 23.68 2.61 0.9907 23.63

CodeGPT
BeamAttack 12.09 2,364.90 3.40 7.42 1.18 0.9800 106.91 6.11 1,904.41 3.02 3.50 0.56 0.9784 104.26 23.86 400.26 4.32 7.20 0.84 0.9948 15.71

ALERT 6.59 2,596.18 5.89 4.72 0.57 0.9862 96.48 4.75 2,798.29 1.55 3.03 0.39 0.9829 89.23 23.50 938.39 8.78 13.37 1.52 0.9879 29.01

PLBART
BeamAttack 13.14 2,327.70 5.75 6.02 0.99 0.9856 76.76 19.17 1,742.51 3.40 7.05 1.15 0.9861 65.79 58.29 361.22 1.19 18.21 2.26 0.9948 16.29

ALERT 9.10 2,549.49 8.39 6.26 0.69 0.9832 79.94 17.28 2,592.32 3.65 9.67 1.23 0.9844 73.10 54.37 488.82 1.70 29.55 3.36 0.9891 25.90

Attack Results Clone Detection-GCJ Vulnerability Detection-Juliet Code Summarization-TLC

CodeBERT
BeamAttack 11.84 4,702.12 6.38 4.52 1.02 0.9795 82.00 0.17 1,176.07 0.95 0.10 0.01 0.9868 85.40 44.23 602.48 4.90 13.35 2.07 0.9924 21.52

ALERT 6.85 4,008.96 2.86 4.13 0.80 0.9739 95.19 0.14 1,872.35 1.78 0.05 0.00 0.9837 30.50 31.87 516.50 6.54 14.13 1.98 0.9877 26.63

CodeGPT
BeamAttack 25.72 3,147.57 5.73 6.60 1.65 0.9861 55.97 0.85 1,554.57 1.21 0.75 0.10 0.9877 139.88 58.58 255.56 1.69 13.42 1.76 0.9948 13.70

ALERT 20.42 3,170.36 2.77 8.70 1.53 0.9813 72.60 0.27 1,847.87 1.92 0.22 0.02 0.9889 92.00 52.66 603.25 6.44 19.90 2.52 0.9904 20.31

PLBART
BeamAttack 47.32 3,446.06 4.96 13.45 3.31 0.9851 75.85 1.09 1,747.10 2.53 0.56 0.07 0.9913 74.62 67.29 368.27 2.40 17.78 2.44 0.9945 15.15

ALERT 36.67 2,537.58 3.20 19.54 3.71 0.9794 98.24 0.78 1,973.91 2.28 0.45 0.04 0.9953 56.48 55.27 521.31 6.22 23.79 3.37 0.9889 23.36

Note: Bold numbers indicate the better performance for the given metric. The cell with lightgray background denotes the outperformance is signi�cant (? < 0.05).

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(a) Clone Detection: the �rst version of index

#1216 from dataset GCJ

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(b) Clone Detection: the cloned version of

index #1216 from dataset GCJ

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(c) Vulnerability Detection: Index #26 from

dataset OWASP

Figure 5: Case study on clone detection and vulnerability detection

experiments are 8.16 and 1.29, which are lower than ALERT (10.71

and 1.43, respectively). The average ACS of BeamAttack is 0.9871,

which outperforms ALERT (0.9861). BeamAttack only performs

worse than ALERT on AED (62.57 vs. 60.54).

To verify whether the performance di�erences are statistically

signi�cant, we apply the one-sided Mann-Whitney U tests [21] to

each experiment. Signi�cant di�erences (?-value<0.05) are marked

with lightgray background in Table 6. The results show that our

method outperforms ALERT on 69.05% of the cases (i.e., 87/126,

18 experiments * 7 metrics). Among these cases, 78 (accounting

for 89.66%) demonstrate signi�cant di�erences, strongly verifying

that our method not only surpasses ALERT on most evaluation

metrics, but also achieves signi�cant outperformance. Although

ALERT performs relatively better in the remaining 39 cases, we

note the di�erence between BeamAttack and ALERT is signi�cant

for only 22 cases.

6 DISCUSSION

6.1 Case Study

In this section, we perform an additional case study to qualitatively

compare BeamAttack with ALERT to understand their distinctions

and why prioritizing statements can signi�cantly a�ect the perfor-

mance of adversarial attacks. We illustrate based on Figure 5 on

clone detection and vulnerability detection. The cloned code corre-

sponding to Figure 5a transforms for loop into while and refactors

the solve function, as shown in Figure 5b. Figure 5c displays a code

snippet from the OWASP dataset that contains a Path Traversal vul-

nerability on lines 14-16. The vulnerability exists due to the lack of

input validation for the variable bar which receives data from the

cookie (i.e., param). Such validation is often performed by using

the if statement, which highlights the importance of if in in�u-

encing the predictions for vulnerability detection models. These

two cases can re�ect our �nding in RQ3 that the statements have the

most signi�cant impact on adversarial attacks against clone detection

and vulnerability detection are For and If, respectively. Speci�cally,

during the attack process, the �rst set of identi�ers extracted by

BeamAttack are: [For: [fw, r, c, t, T, w, scanner]] and

[If: [cookie, foundit, i, cookies, bar, param]] respectively

since it prioritizes those statements based on the learned prior

knowledge. One successful attack substitution follows [w↦→j, c↦→k,

fw ↦→ww] and [cookies↦→Cooks, param ↦→ram, bar↦→ban, i ↦→vi,

foundit ↦→foundait, doSomething↦→runNothing] respectively.

It can be seen that successful attacks can be achieved by only replac-

ing part of the identi�ers in the For and If statements. In contrast,

the sequences replaced by ALERT are: [c, fw, w, res, r, inFile,

outFile, t, T, scanner] and [bar, param, response, foundit,

fos, i] respectively. We note that ALERT does not accurately re-

place the identi�ers required to achieve the attack. For example, it

replaces irrelevant identi�ers inFile and outFile in clone detec-

tion, and also misses the identi�er cookies that is highly relevant

to the vulnerability. The above analysis explains the distinction

between ALERT and BeamAttack as well as why ALERT is less

e�ective.

In addition to the di�erence in prioritizing identi�er substitu-

tion, it is worth noting that we also utilize beam search to attack,

which allows more sequences for identi�er substitutions within

the same statement. For instance, in Figure 5c, ALERT replaces

identi�ers strictly according to a �xed order, meaning only param

can come after bar. In contrast, after replacing bar, BeamAttack

can choose foundit, param, or i as the next replaceable identi�er,

which mitigates the risk of getting stuck in local solutions.

498

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

6.2 Implications

For model robustness, we �nd that existing PTMCs are susceptible

to adversarial attacks (Finding 1), which presents a considerable

challenge to their robustness. Therefore, we strongly advocate that

researchers need to place equal, if not greater, emphasis on improv-

ing model robustness while striving to improve model performance.

Practical strategies such as adversarial training or data augmenta-

tion can be employed to enhance robustness. These methods can

equip models with the resilience required to counter adversarial

perturbations and improve their overall reliability.

For adversarial attack approach, considering the trend of large

language models (LLMs) towards being closed-source and charge-

able, attacks through massive queries may become extremely costly

or even infeasible. Therefore, a further exploration of the rela-

tionship between code identi�ers and model prediction results is

necessary to derive a more accurate sequence for identi�er replace-

ment. Additionally, we can leverage the SOTA language generation

techniques, such as ChatGPT, to replace identi�ers and enhance the

naturalness of adversarial examples. Finally, considering the e�ec-

tiveness of statement prioritization, future methods should focus

on a more in-depth analysis of code structure, such as employing

comprehensive semantic analysis to devise more e�ective attacks.

7 THREATS TO VALIDITY

Internal validity: Parameter settings such as the number of itera-

tions can lead to di�erent results. We adopt the following strategy

to mitigate this threat. When the parameters can be set uniformly,

we set the parameters consistently with the �ve attacks, such as the

number of candidates for the identi�er. When the parameters are

speci�c to an attack approach, we follow the settings in the original

paper exactly to achieve fair comparisons. Another internal valid-

ity threat is the potential bugs in our implementation. To reduce

such threats, we have carefully checked our implementations and

also open sourced all the materials and code to the community for

further checks.

External validity: External validity is threatened by the general-

izability of tasks, datasets, and models. For tasks, the selected ones

have been extensively studied in existing works on adversarial at-

tacks [34, 43]. For datasets, we not only use the CodeXGLUE bench-

mark studied in many original papers on PTMCs and adversarial

attacks, but also include a new dataset, the OWASP benchmark, to

evaluate the general applicability of the attack approaches. For the

target models, we mitigate this threat by selecting the most popular

PTMCs with relatively high performance.

8 RELATED WORK

Black box attack approaches have been extensively discussed in

Section 3.1.2, and we introduce other white box attack approaches

in this section. Speci�cally, Yefet et al. [36] propose DAMP, which

utilizes the gradient information of the target model to �nd replace-

ment identi�ers in the opposite direction of the gradient descent.

Meanwhile, they use one-hot vector to encode code, aiming at ob-

taining candidates by perturbing the vector and then mapping them

back to tokens. However, such an approach is unable to constrain

the candidates so that it may obtain irrelevant identi�ers similar

to random substitutions. Srikant et al. [26] turn the adversarial

attack into an optimization problem, and identify two aspects in

the adversarial attack: which parts of the program to transform,

and what transformations to use. They correspond to the search

strategy and replacement strategy respectively as we mentioned

above. Then, they use projected gradient descent (PGD) based joint

optimization (JO) solver to obtain the optimal transform location

and transform method. Zhang et al. [39] propose CARROT, which

incorporates gradient information into transform operations to

guide the search process more e�ectively. Although retrieving gra-

dients during transform operations may take more time, it can

e�ectively reduce search iterations. The above white box attacks

are not very practical as the latest SOTA models, such as ChatGPT,

are increasingly becoming closed-source. These models are typi-

cally deployed remotely and o�er services through API interfaces,

making it di�cult to access their internal structure and parameters.

There is no comprehensive evaluation towards adversarial attack

on PTMCs currently, and the study most similar to ours is that of

Zeng et al. [38]. However, they mainly focus on evaluating the e�ec-

tiveness of PTMCs while the adversarial attack approaches are not

fully studied. Speci�cally, they evaluate several attack approaches

adapted from the �eld of natural language processing (NLP), and

focus on comparison in terms of ASR. In contrast, our study specif-

ically focuses on attacks designed for SE applications, and we have

additionally evaluated attack e�ciency and the quality of the gen-

erated adversarial examples. Moreover, the attack approach they

proposed simply combines WIR and random replacement without

incorporating the unique characteristics of programming languages

and code intelligence tasks, which is a common shortfall for most

existing studies on adversarial code attacks. In this work, for the

�rst time, we generate adversarial examples by perturbing source

code based on the contextual information of identi�ers.

9 CONCLUSION

This study thoroughly evaluates the performance, e�ciency, and

robustness of adversarial attacks on PTMCs. Results show that

PTMCs are easily susceptible to adversarial perturbations, with

varying levels of robustness among di�erent tasks. The code sum-

marization model is found to be the most vulnerable. Additionally,

high-performing attack approaches often come with signi�cant

computational overhead. The importance of di�erent statements is

also analyzed, revealing varying levels of sensitivity among di�er-

ent context identi�ers to counterattacks. Based on such �ndings,

we propose a new approach, BeamAttack, which improves the e�ec-

tiveness of attacks by 21.30% and e�ciency by 14.62% compared to

the existing approach ALERT using the same identi�er substitution

strategy.

10 DATA AVAILABILITY

The data, source code, and the results of this paper are available at:

https://github.com/CGCL-codes/Attack_PTMC.

ACKNOWLEDGMENTS

We sincerely thank all anonymous reviewers for their valuable

comments. This work was supported by the Key Program of Hubei

under Grant No. 2023BAA024, the National Natural Science Foun-

dation of China (Grant No. 62002125), and the Young Elite Scientists

Sponsorship Program by CAST (Grant No. 2021QNRC001).

499

https://github.com/CGCL-codes/Attack_PTMC

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4998–5007.
https://doi.org/10.18653/v1/2020.acl-main.449

[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Uni�ed Pre-training for Program Understanding and Generation. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655–2668.
https://doi.org/10.18653/v1/2021.naacl-main.211

[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, 1536–1547. https:
//doi.org/10.18653/v1/2020.�ndings-emnlp.139

[4] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Uni�ed Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Compu-
tational Linguistics, 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499

[5] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations
with Data Flow. In Proceedings of the 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=jLoC4ez43PZ

[6] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie
Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-
trained models: Past, present and future. AI Open 2 (2021), 225–250. https:
//doi.org/10.1016/j.aiopen.2021.08.002

[7] Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh
Jha, and Thomas W. Reps. 2022. Semantic Robustness of Models of Source Code.
In Proceedings of the IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE,
526–537. https://doi.org/10.1109/SANER53432.2022.00070

[8] Christopher Herbig. 2002. Genetic Algorithms vs. Greedy Algorithms in the
Optimization of Course Scheduling. J. Comput. Sci. Coll. 17, 5 (apr 2002), 90–94.
https://dl.acm.org/doi/pdf/10.5555/775009.775028

[9] Katherine Hough, Gebrehiwet B. Welearegai, Christian Hammer, and Jonathan
Bell. 2020. Revealing injection vulnerabilities by leveraging existing tests. In
Proceedings of the 42nd International Conference on Software Engineering, ICSE
2020, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan
Bae (Eds.). ACM, 284–296. https://doi.org/10.1145/3377811.3380326

[10] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Arti�cial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 2269–2275. https:
//doi.org/10.24963/ijcai.2018/314

[11] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.org/abs/
1909.09436

[12] Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan.
2013. Beam search algorithms for multilabel learning. Mach. Learn. 92, 1 (2013),
65–89. https://doi.org/10.1007/s10994-013-5371-6

[13] Zhen Li, Qian (Guenevere) Chen, Chen Chen, Yayi Zou, and Shouhuai Xu. 2022.
RoPGen: Towards Robust Code Authorship Attribution via Automatic Coding
Style Transformation. In Proceedings of the 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 1906–1918. https://doi.org/10.1145/3510003.3510181

[14] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li,
Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming
Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation. In Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and

Benchmarks 2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung
(Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html

[15] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. 1953. Equation of state calculations by fast computing
machines. The journal of chemical physics 21, 6 (1953), 1087–1092. https://doi.
org/10.1063/1.1699114

[16] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and
Davide Di Ruscio. 2021. Adversarial Attacks to API Recommender Systems:
Time to Wake Up and Smell the Co�ee5 . In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021, Melbourne,
Australia, November 15-19, 2021. IEEE, 253–265. https://doi.org/10.1109/ASE51524.
2021.9678946

[17] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. 2021. A Search-
Based Testing Framework for Deep Neural Networks of Source Code Embedding.
In Proceedings of the 14th IEEE Conference on Software Testing, Veri�cation and
Validation, ICST 2021, Porto de Galinhas, Brazil, April 12-16, 2021. IEEE, 36–46.
https://doi.org/10.1109/ICST49551.2021.00016

[18] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. 2017. Understanding the
syntactic rule usage in java. J. Syst. Softw. 123 (2017), 160–172. https://doi.org/
10.1016/j.jss.2016.10.017

[19] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. 2020. Pre-trained Models for Natural Language Processing: A Survey.
CoRR abs/2003.08271 (2020). arXiv:2003.08271 https://arxiv.org/abs/2003.08271

[20] Md. Ra�qul Islam Rabin, Nghi D. Q. Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and
Mohammad Amin Alipour. 2021. On the generalizability of Neural Program
Models with respect to semantic-preserving program transformations. Inf. Softw.
Technol. 135 (2021), 106552. https://doi.org/10.1016/j.infsof.2021.106552

[21] Graeme D. Ruxton. 2006. The unequal variance t-test is an underused alternative
to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology 17, 4 (05
2006), 688–690. https://doi.org/10.1093/beheco/ark016

[22] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Moham-
mad Hossein Rohban, and Mohammad Sabokrou. 2022. A Uni�ed Survey on
Anomaly, Novelty, Open-Set, and Out of-Distribution Detection: Solutions and
Future Challenges. Trans. Mach. Learn. Res. 2022 (2022). https://openreview.net/
forum?id=aRtjVZvbpK

[23] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An In-depth
Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities.
ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 25:1–25:45. https://doi.org/10.
1145/3554732

[24] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2022. On the Evaluation of Neural Code Sum-
marization. In Proceedings of the 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
1597–1608. https://doi.org/10.1145/3510003.3510060

[25] Fausto Spoto, Elisa Burato, Michael D. Ernst, Pietro Ferrara, Alberto Lovato,
Damiano Macedonio, and Ciprian Spiridon. 2019. Static Identi�cation of Injection
Attacks in Java. ACM Trans. Program. Lang. Syst. 41, 3 (2019), 18:1–18:58. https:
//doi.org/10.1145/3332371

[26] Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan,
Gaoyuan Zhang, and Una-May O’Reilly. 2021. Generating Adversarial Computer
Programs using Optimized Obfuscations. In Proceedings of the 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=PH5PH9ZO_4

[27] Je�rey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and
Mohammad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of Inter-
project Code Clones. In Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October
3, 2014. IEEE Computer Society, 476–480. https://doi.org/10.1109/ICSME.2014.77

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the 31st Annual Conference on Neural Information Pro-
cessing Systems, NIPS 17, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (Eds.). 5998–6008. https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[29] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. SIGAPP
Appl. Comput. Rev. 19, 4 (jan 2020), 28–39. https://doi.org/10.1145/3381307.
3381310

[30] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R. Lyu. 2022. No more �ne-tuning? an experimental evaluation
of prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, 382–394.
https://doi.org/10.1145/3540250.3549113

500

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1109/SANER53432.2022.00070
https://dl.acm.org/doi/pdf/10.5555/775009.775028
https://doi.org/10.1145/3377811.3380326
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.1007/s10994-013-5371-6
https://doi.org/10.1145/3510003.3510181
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1109/ASE51524.2021.9678946
https://doi.org/10.1109/ASE51524.2021.9678946
https://doi.org/10.1109/ICST49551.2021.00016
https://doi.org/10.1016/j.jss.2016.10.017
https://doi.org/10.1016/j.jss.2016.10.017
https://arxiv.org/abs/2003.08271
https://arxiv.org/abs/2003.08271
https://doi.org/10.1016/j.infsof.2021.106552
https://doi.org/10.1093/beheco/ark016
https://openreview.net/forum?id=aRtjVZvbpK
https://openreview.net/forum?id=aRtjVZvbpK
https://doi.org/10.1145/3554732
https://doi.org/10.1145/3554732
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.1145/3332371
https://doi.org/10.1145/3332371
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1109/ICSME.2014.77
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3540250.3549113

An Extensive Study on Adversarial A�ack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[31] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code
Clones with Graph Neural Network and Flow-Augmented Abstract Syntax
Tree. In Proceedings of the 27th IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering, SANER 2020, London, ON, Canada, Febru-
ary 18-21, 2020, Kostas Kontogiannis, Foutse Khomh, Alexander Chatzigeor-
giou, Marios-Eleftherios Fokaefs, and Minghui Zhou (Eds.). IEEE, 261–271.
https://doi.org/10.1109/SANER48275.2020.9054857

[32] Wenqi Wang, Run Wang, Lina Wang, Zhibo Wang, and Aoshuang Ye. 2023.
Towards a Robust Deep Neural Network Against Adversarial Texts: A Survey.
IEEE Trans. Knowl. Data Eng. 35, 3 (2023), 3159–3179. https://doi.org/10.1109/
TKDE.2021.3117608

[33] Yue Wang, Weishi Wang, Sha�q R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and ScottWen-tau Yih (Eds.). Association for Computational
Linguistics, 8696–8708. https://doi.org/10.18653/v1/2021.emnlp-main.685

[34] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
trained Models of Code. In Proceedings of the 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 1482–1493. https://doi.org/10.1145/3510003.3510146

[35] Jiayi Ye, Chao Zhang, and Xinhui Han. 2014. POSTER: UAFChecker: Scalable
Static Detection of Use-After-Free Vulnerabilities. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,
1529–1531. https://doi.org/10.1145/2660267.2662394

[36] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models
of code. Proc. ACM Program. Lang. 4, OOPSLA (2020), 162:1–162:30. https:
//doi.org/10.1145/3428230

[37] Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou,
Yuan Zang, Zhiyuan Liu, and Maosong Sun. 2021. OpenAttack: An Open-source
Textual Adversarial Attack Toolkit. In Proceedings of the Joint Conference of
the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, ACL

2021 - System Demonstrations, Online, August 1-6, 2021, Heng Ji, Jong C. Park,
and Rui Xia (Eds.). Association for Computational Linguistics, 363–371. https:
//doi.org/10.18653/v1/2021.acl-demo.43

[38] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program
understanding and generation. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2022, Virtual Event,
South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.).
ACM, 39–51. https://doi.org/10.1145/3533767.3534390

[39] Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe Sun,
Yang Liu, and Zhi Jin. 2022. Towards Robustness of Deep Program Processing
Models - Detection, Estimation, and Enhancement. ACM Trans. Softw. Eng.
Methodol. 31, 3 (2022), 50:1–50:40. https://doi.org/10.1145/3511887

[40] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating
Adversarial Examples for Holding Robustness of Source Code Processing Models.
In Proceedings of the Thirty-Fourth AAAI Conference on Arti�cial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 1169–1176.
https://ojs.aaai.org/index.php/AAAI/article/view/5469

[41] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2020.
Adversarial Attacks on Deep-learning Models in Natural Language Processing:
A Survey. ACM Trans. Intell. Syst. Technol. 11, 3 (2020), 24:1–24:41. https:
//doi.org/10.1145/3374217

[42] Gang Zhao and Je� Huang. 2018. DeepSim: deep learning code functional simi-
larity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 141–151.
https://doi.org/10.1145/3236024.3236068

[43] Yu Zhou, Xiaoqing Zhang, Juanjuan Shen, Tingting Han, Taolue Chen, and
Harald C. Gall. 2022. Adversarial Robustness of Deep Code Comment Generation.
ACM Trans. Softw. Eng. Methodol. 31, 4 (2022), 60:1–60:30. https://doi.org/10.
1145/3501256

Received 2023-03-02; accepted 2023-07-27

501

https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/TKDE.2021.3117608
https://doi.org/10.1109/TKDE.2021.3117608
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/2660267.2662394
https://doi.org/10.1145/3428230
https://doi.org/10.1145/3428230
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3511887
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3501256
https://doi.org/10.1145/3501256

	Abstract
	1 Introduction
	2 Background
	2.1 Pre-Trained Models of Code
	2.2 Adversarial Attack on Code

	3 Study Design
	3.1 Subjects and Datasets
	3.2 Evaluation Metrics
	3.3 Research Questions
	3.4 Settings of Attacks

	4 Empirical Results
	4.1 Attack Performance (RQ1)
	4.2 Adversarial Code Quality (RQ2)
	4.3 Contexts of Perturbed Identifiers (RQ3)

	5 New Approach
	5.1 Approach Design
	5.2 Evaluation

	6 Discussion
	6.1 Case Study
	6.2 Implications

	7 Threats to Validity
	8 Related work
	9 Conclusion
	10 Data Availability
	Acknowledgments
	References

